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Internal eigenstate problem: The trial state method
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It is shown that the device of adding a special trial state to a basis set, thus augmenting by 1 the dimension
of any complex matrix being studied, leads to a formalism that permits the application of the wave operator
approach to calculating the internal spectrum of the matrix as well as the action of the resolvent operator (E
2H)21 on an arbitrary vector in the originalN-dimensional space. Two calculational variants of the method
are described and both are tested by studying the problem of a short laser pulse interacting with a H2

1 ion.
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I. INTRODUCTION

Studies of the bound and resonance states of molec
systems and of the quantum dynamical processes invol
such systems are often faced with the task of calcula
several internal eigenvalues and eigenvectors for large
trices which may have complex elements. This task ari
for example, in the work of Manthe and Miller@1,2#, which
uses a reaction probability operator expressed in terms o
Green operator@3# for a case in which the potential incorpo
rates a complex absorbing term to enforce outgoing w
boundary conditions in the reactant and product spatial
gions. It also arises in the Floquet treatment of photoreac
processes@4,5# which, when allied with the complex coord
nate method@6#, allows calculation of photoionization an
photodissociation probabilities using Floquet eigenvector
a basis in a generalized Hilbert space; the method can
generalized to nonperiodic systems in order to treat proce
involving pulsed laser fields@7#. Recent work@8# shows that
strongly nonlinear photodissociation phenomena can
treated by means of a few Floquet eigenvectors in an ap
priately defined extended Hilbert space.

The matrices used to describe resonance states and
toreactive processes are often non-Hermitian because o
use of complex rotations or complex absorbing potentials
the calculation of the matrix elements. They are, howev
often sparse matrices, for which only the spectrum in a w
dow centered on some reference energy is required or
which only eigenvectors with some suitable property
sought. For example, spectroscopic calculations may n
energies that have zero or very small imaginary part~bound
states or long-lived resonances!, while photoreactive studie
primarily select Floquet eigenstates that have a suitably la
overlap with some specified initial state.

The many methods of eigenvalue calculation propose
the literature can be roughly classified into indirect and dir
methods. The indirect methods include the relaxation met
@9#, the spectral method@10#, and the filter diagonalization
method@11#. The direct methods, which include perturbati
and moment method approaches, include those of Bloch@12#
and Davidson@13# and the Lanczos and block Lanczos me
1063-651X/2001/63~2!/026701~6!/$15.00 63 0267
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ods @14,15#. Experience with the direct methods has show
despite their wide range of applicability, some cases
which they typically encounter difficulties. The Bloch algo
rithm is easily implemented but as a perturbative metho
suffers from convergence problems, although these h
been somewhat reduced by the use of the intermediate s
concept@16# and of quasiquadratic iterative processes@17#.
The single-vector Lanczos method shares with the Bloch
gorithm and with the method of variational Rayleigh iter
tion @18# the advantage of requiring only the formation
matrix-vector products but it generates artificial repetitions
the spectrum and tends to converge most readily to eigen
ues at the ends of the spectrum unless special steps are
to handle these problems. Nevertheless, the Lanczos me
does converge quickly for interior eigenvalues, if the loc
gap spacings are sufficiently large.

Hybrid techniques have been proposed in order to ov
come some of the typical defects of the methods mentio
above and so make possible the inspection of any des
part of the spectrum of a large matrix, in what may be a
propriately described as ‘‘matrix spectroscopy’’@19#. To this
end the Lanczos method has been coupled with a spe
filter @19# and a preconditioned Green function block Lan
zos algorithm has also been proposed@20#. A Green function
expansion in terms of Chebyshev polynomials, exploiti
their simple recurrence relations, was used in@21#. Cheby-
shev polynomials are also used in a spectral projec
method, which uses an absorbing potential-like damping f
tor and is able to produce simultaneous results at sev
energies; this last approach has been applied to reactive
tering problems@22# and to calculations of vibrational reso
nances@23#.

The present work tests an approach that blends a G
function filter with wave operator techniques. The strate
used hinges on an equivalence between two calculati
first, that of finding the resolvent (E2H)21V for an arbi-
trary vectorV in the primaryN-dimensional Hilbert space
and, second, that of solving an eigenvalue problem in
augmented space ofN11 dimensions for a new matrix tha
depends linearly onH. The (N11)-dimensional space is ob
tained by adding a special ‘‘trial state’’ to the original spac
©2001 The American Physical Society01-1
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JOLICARD, KILLINGBECK, AND PERRIN PHYSICAL REVIEW E63 026701
and the new eigenvalue problem is solved by using a tim
dependent wave operator formalism which has been
scribed and applied in previous work@24#.

The formalism is given in detail in Sec. II, while Sec. I
sets out two calculational implementations of it: one of th
proceeds by working out (E2H)21V, while the other aims
more directly at the eigenvalues. Section IV carries ou
numerical trial of these two implementations by calculati
some generalized Floquet eigenstates for the problem
strong pulsed laser field interacting with the H2

1 ion.

II. THE BASIC IDEA

Let H be a general (N3N) nonsingular matrix represen
ing some Hamiltonian in a finiteN-dimensional Hilbert
space andua& a vector of this space.H can be a complex
non-Hermitian matrix if complex similarity transformation
have been intoduced to give a representation of any cont
involved in the processes described.

If H is partitioned into a zeroth-order Hamiltonian plus
perturbation, (H5H01V), andua& is an eigenvector ofH0 ,
then a key problem in quantum dynamics is the calculat
of theH eigenvectorula& that issues fromua& when an adia-
batic switching on of the perturbationV is used. In the strong
coupling regime, the calculation principally involves th
group of n H eigenvectorsn!N $ula

i &,i 51 –n% that have
significant overlap with the initial stateua&.

An indirect way to treat the problem is to form the pro
uct @1/(E2H)#ua& in the N-dimensional Hilbert space«N .
In the spectral projection method of Mandelshtam and T
lor @22# this product is found by using a polynomial expa
sion of the resolvent operator. The alternative approach
the present work introduces an extend
(N11)-dimensional Hilbert space«N11 consisting of the di-
rect sum of«N and a one-dimensional supplementary sp
spanned by a vectoru0& orthogonal to«N . This vector, the
test state is a mathematical aid, with no direct physical in
pretation. In the extended space we introduce a new nons
metric matrixH with a structure that is displayed pictoriall
in Fig. 1. This matrix has a first column containing a sing
arbitrary diagonal matrix elementE0 and the vectorR,
shown in Fig. 1, which can be seen to represent the for
operator

R5ua&^0u ~1!

FIG. 1. Schematic representation of the modification of theH
matrix that is produced by introducing a single extra test s
which is nonsymmetrically coupled to the states in the original H
bert space.
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if the numerical elements inserted in the columnR are those
of the vectorua&.

This matrix possesses two main features:~i! All the non-
diagonal elements in the first row are zero; the diagonal
ementE0 is consequently an exact eigenvalue of the n
(N11)3(N11) matrix, whatever the elements are in th
first column.~ii ! The matrix is non-Hermitian, even ifH is a
real symmetric matrix.

The last point is a handicap since the eigenvalue treatm
of this matrix cannot use the well established procedures
Hermitian matrices. However, the matrix has an interest
property related to the eigenvector associated withE0 . An
elementary calculation reveals that this eigenvectorul0& can
be expressed in the form

ul0&5F11S 1

E02H DRG u0& ~2!

and this provides the key point of our calculational strate
To see this result we set the first eigencolumn element e
to 1 and regard the remaining elements as a vectoruX&. The
eigenvalue equation gives for theJth component

RJ311(
K

HJKXK5E0XJ ,

leading to the vector equations

@~E012H !X#J5RJ ,

i.e.,

uX&5~E02H !21uR&,

which is equivalent to Eq.~2!, since we chooseuR&5ua&.
Consequently we find from Eqs.~1! and ~2! that the nondi-
agonal components of vectorul0& are given by

~ ul0&)off diag5
1

E02H
ua&, ~3!

so that the calculation of the action of the resolvent opera
on the trial vectorua& can be found by solving the eigenvalu
equation

Hul0&5E0ul0& ~4!

in the extended space.
This offers the possibility of applying a standard eige

value algorithm to solve this filtered system, albeit still wi
the restriction thatH is a non-Hermitian matrix. The extra
state u0& which gives its name to this method was initial
called the ‘‘état sonde’’ in French; in English it is best ren
dered as trial state~or probe state!.

At first sight it might appear that the reformulation of th
problem has not changed the intrinsic difficulty of its sol
tion. However, the modified formulation brings the proble
within the region of applicability of the time-dependent wa
operator formalism@24#, which can handle Eq.~4! whenE0
is a fixed number and whenul0& has anuX& component that
develops from an initial vectorua& in the space«N .

e
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III. PRACTICAL IMPLEMENTATION

A. The general scheme

From Eqs.~2! and~3!, the solutionul0& of the eigenvalue
problemHul0&5E0ul0&, Eq. ~4!, can be written as

ul0&5u0&1uX&, ~5!

where

uX&5
1

E02H
ua& ~6!

designates the components of the eigensolution in the
mary Hilbert space«N .

Denoting byulb& the eigenvectors ofH and byEb their
associated eigenvalues, we have in the general case

ua&5(
b

abulb& ~7!

and

uX&5(
b

ab

E02Eb
ulb&. ~8!

We particularly note that when the trial vectorua& is propor-
tional to a single eigenvectorula&, i.e., ua&5aaula&, then
uX& is itself proportional to this vector:uX&5@aa /(E0
2Ea)#ula&. This special feature will be used later.

We will now integrate the eigenvalue equation~4! by not-
ing that ul0& satisfies an intermediate normalization con
tion in the extended Hilbert space, i.e.,^0ul0&51. Conse-
quently, ul0&^0u can be assimilated to the Bloch wav
operator associated with the test stateu0& and the matrixH.
The calculation of the off-diagonal partX of this operator
@i.e., X5( j Þ0(^ j ul0&)u j &^0u# can be made by using th
time-dependent wave operator formulation already explai
in @24#. We will briefly describe that formalism and its ad
aptation for the present problem.

~i! First we select a trial wave operatoruX(n50)&. The
simplest choice isuX(n50)&50. However, ifua& is one of the
H0 eigenvectors then a better choice is

uX~n50!&5
1

E02Haa
ua& ~9!

@cf. Eq. ~6!#.
~ii ! The matrixH is then separated into two parts,

H5~H2Q0H̃~n50!P0!1Q0H̃~n50!P0 , ~10!

where H̃(n50)5(12X(n50))H(11X(n50)). Here P0 is the
projectoru0&^0u for the test caseu0& andQ0 is the projector for
the complementary space, i.e., for the primary Hilbert sp
«N .

~iii ! An adiabatic integration procedure is then introduc
by taking a time-dependent matrix in place of the seco
matrix on the right hand side of Eq.~10!:

Q0H̃~n50!P0→Q0H̃~n50!P0F t

Ts
2

1

2p
sin~2pt/Ts!G .

~11!
02670
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This introduces artificially a time-dependent matrixH(t) by
replacing the first columnR5ua&^0u with a time-dependen
one such that att50 the trial vectoru0&1uX(n50)& is an
exact eigenvector ofH(t50)5H2Q0H̃(n50)P0 , while at
t5Ts we haveH(t5Ts)5H. The switching functionF(t)
5t/Ts2(1/2p)sin(2pt/Ts) increases from 0 att50 up to 1
at t5Ts with zero first- and second-order time derivatives
the ends of the interval in order to reduce nonadiabatic
fects.

~iv! The evolution equation for the time-dependent
duced wave operator is then integrated over the inte
@0,Ts# by taking the initial choice

X~ t50!5X~n50!. ~12!

The integration process uses the formula derived in@24#,

X~ t1Dt !5X~ t !1FX~ t2Dt !2X~ t !1
Q0H̃~ t !P0

\v
G

3exp~22ivDt !2
Q0H̃~ t !P0

\v
, ~13!

where the compact notationv j ,a5(H̃j j 2H̃aa)/\ has been
used.

The propagation equation~13! has desirable interpolator
properties. The limitv→0 leads to the standard secon
order differential scheme@25#, while in the region of largev
the rapidly oscillating term has a negligible contribution
the adiabatic limit (Ts→`) and can be suppressed, leadi
to a result similar to the RDWA iteration scheme resu
X(t1Dt)5X(t)2@Q0H̃(t)P0#/\v. Equation ~13! is thus
appropriate for the adiabatic limit~i.e., the case of large
switching time Ts! since the high-frequency terms, whic
usually produce an instability and so impose the need fo
large number of time steps, can be arbitrarily suppress
The equation can also cope with accidental resonancesv
;0) between the states that are implicitly involved in t
integration process.

The integration of this time-dependent wave operator
@ t50, t5Ts# gives a solutionX(n11), a first-cycle solution,
which for sufficiently largeTs will be a good approximation
of the exact stationary wave operator. When the nonadiab
effects remain too large, i.e., when the residual te
Q0H̃(n11)P05Q0(12X(n11))H(11X(n11)) is not suffi-
ciently small, a second cycle of integration@Eqs.~10!–~13!#
can be performed by simply incrementing the indexn (n
50→n51) in the procedure~i!→~iv!.

B. A second option: The eigenvalue problem

The preceding cycle of integration converges to the so
tion ul0&5u0&1@1/(E02H)#ua&. From Eqs.~7! and ~8!, it
gives a vectorul0& that is a linear combination of the exactH
eigenvectorsulb& possessing a nonvanishing overlap w
ua&. When the chosen value ofE0 is far away from the cor-
responding eigenvaluesEb in the complex plane, the integra
tion is easier but the final solution has a wide distributi
over the basis setulb&. In contrast, whenE0 is near to a
group of N0 exact eigenvalues, the weight of these sta
1-3
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JOLICARD, KILLINGBECK, AND PERRIN PHYSICAL REVIEW E63 026701
increases dramatically in the expansion@Eq. ~8!# because of
the large factors 1/(E02Eb). By usingN0 different E0 val-
ues in this region of the complex plane one can generat
N03N0 effective Hamiltonian which when diagonalized w
give the group of vectorsulb& involved in the expansion.

However, our formalism can actually be modified to sol
the eigenproblemHula&5Eaula& directly and not just to
find the product@1/(E02H)#ua& for the indirect process o
the preceding paragraph. To simplify the presentation
shall assume thatua& is one of the basis vectors used in t
representation ofH. An adiabatic scheme is then introduce
by transformingH into a time-dependent matrix,

H→H~ t !. ~14!

In this process all the matrix elements are unchanged ex
the off-diagonal elements of columna, in which we incor-
porate the time-dependent factor:

f ~ t !5F t

Ts
2

1

2p
sinS 2pt

Ts
D G . ~15!

With this choiceua& is an eigenvector ofH(t50) with the
eigenvalueEa

05^auHua&, while H(t5Ts)[H. The initial
wave operator associated with the test state is chosen to

ul0~ t50!&^0u5u0&^0u1uX~ t50!&^0u, ~16!

with

uX~ t50!&5
1

E02H~ t50!
ua&5

1

E02Haa
ua&,

i.e., we useua& as the initialR column ~cf. Fig. 1!.
The eigenvalue equationHul0&5E0ul0& is then inte-

grated by using the time-dependent wave operator proce
and by forcing at each time a proportionality betwe
ul0(t)& and theH(t) eigenvectorula(t)& that issued from
ua& at time t50. This proportionality is imposed by varyin
the first column as follows~Fig. 1!:

R~ t !5(
j Þ0

$@E02Ea~ t !#^ j ul0~ t !&%u j &^0u, ~17!

where

Ea~ t !5^X~ t !uHX~ t !&/^X~ t !uX~ t !&.

This forced evolution is introduced in order to obtain at t
end of the integration using Eq.~13! a vector uX& that is
proportional to ula&, i.e., to ensure thatuX(t5Ts)&
5@1/(E02Ea)#ula&, with Hula&5Eaula&. The procedure
is identical to those in the preceding section, except that
columns@first column of Eq.~17! and columna of Eq. ~15!#
are now modified during the time integration.

IV. TEST: CALCULATION OF FLOQUET EIGENSTATES
TO DESCRIBE PHOTODISSOCIATION

DUE TO ULTRASHORT LASER PULSES

We will consider the case of theH2
1 molecule subjected

to a short Gaussian electric field pulse. In the Bo
02670
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Oppenheimer approximation, the coupling produced by
field-matter interaction is

Vgu~r ,t !5mgu~r !E0 exp@2~ t2t0!2/T2#cos~v0t !,
~18!

whereE0 is the maximum amplitude of the electric field an
mgu is the transition moment between the ground electro
surface 1ssg and the excited 2psu surface.

The (t,t8) wave operator theory@8# sets out to describe
the photodissociation process induced by a short laser p
by using a reduced basis formed by a few eigenvectors of
Floquet Hamiltonian

HF~ t !5H~ t !2 i\
]

]t
. ~19!

The HamiltonianH(t) represents the dynamics of the mo
ecule on the two surfaces coupled by the field. It include
negative imaginary potential2 iVopt(r ) added in the spatia
asymptotic region to absorb the outgoing wave packets. T
Hamiltonian belongs to an extended Hilbert space which
cludes the two radial coordinates for the two surfaces and
whole time variation of the field envelope. This space
spanned by a discrete product basis set with elem
u j & ^ un&, whereuj& are the eigenvectors ofH without the field
coupling@Eq. ~18!# and un& is a basis that spans a time inte
val @2T/2,T/2# in which the Gaussian field envelope is in
cluded and with elementŝtun&5exp(2pint/T).

Using the (t,t8) wave operator theory@8#, one can express
the photoreactive dynamics issuing from an initial unp
turbed eigenstate such asu j 51&3un50& ~i.e., the first free
eigenstate of the ground surface times the initial laser fi
state un50&! by simply calculating the associated Floqu
eigenstate (ul j 51,n50&). The eigenproblem in the generalize
Hilbert space then appears as the key aspect of this form
tion. The present test calculation considers the same da
those of@24#. In Eq. ~18! v0 is taken to be that correspond
ing to a wavelengthl5329.7 nm, to induce an energetical
favorable vertical three-photon transition from the bou
state~1ssg , v50! to the continuum (2psu). The field am-
plitude E0 corresponds to a laser field intensity
2.531013W/cm2.

23100 eigenfuctionsuj& are used to represent the tw
uncoupled surfaces on the range@0,12# a.u. of the radial co-
ordinate and 198 functionsun& are used to span the tim
interval @2T/2,T/2# with T51000 a.u.„On this interval the
Gaussian pulse withT5140 a.u.@Eq. ~18!# is centered att
50.… This leads to a coupled basis that includes 39 6
states.

Figure 2 represents the initial unperturbed eigenva
Ej 51,n50

0 ~situated at the bottom of the arrow! and the first
500 nearest unperturbed eigenvalues. The optical pote
displaces all these eigenvalues into the lower half of
complexE plane. Nevertheless, the density of states rema
high, with multiple near degeneracies. The test state eig
value E0 is defined from the initial eigenvalue by using
complex positive shift

E05Ej 51,n50
0 1 iD. ~20!
1-4
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INTERNAL EIGENSTATE PROBLEM: THE TRIAL . . . PHYSICAL REVIEW E 63 026701
Figure 2 refers to the choiceD50.531022. This shift pro-
cess extracts the test state from the region of large densi
states by movingE0 into the upper half plane. It thus avoid
accidental resonances, since all the exactH eigenvaluesEj ,n

as well as all the unperturbed eigenvaluesEj ,n
0 are situated in

the lower half plane.
Figure 3 presents some results obtained by applying

computational method of Sec. III A. This figure shows on
logarithmic scale a measure of the ‘‘defect’’ of the calculat
test stateul0& @Eq. ~5!# with respect to the exact eigenvecto
The measure chosen is the quantity

i~H2E0!ul0&i2. ~21!

The independent variable used in Fig. 3 is the ‘‘order
iteration’’ in the wave operator time integral@Eq. ~13!#, i.e.,
the number of calls of the subroutine which forms the pro
uct of theH matrix with the vectoruX(t)& ~this number of
calls gives an approximate measure of the total CPU t
required!.

FIG. 2. Positions in the complex plane of the unperturbed F
quet eigenvalues for the problem of H2

1 subjected to a Gaussia
pulse~see the text!. The units are atomic units. The arrow conne
the initial unperturbed state eigenvalueEj 51,n50

0 to the test state
energyE0 . The 500 nearest unperturbed eigenvalues are also
resented.

FIG. 3. A measure of the defect of the calculated test stateul0&
as an eigenvector of the extended matrixH, i(H2E0)ul0&i2, is
shown on a logarithmic scale as a function of the iteration orden.
Four curves, corresponding to four decreasing values of the c
plex shift iD @Eq. ~20!# are represented. From the bottom~full line!,
to the top~dotted line!: D51021, 0.331021, 1022, 0.331022.
02670
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Curves corresponding to four decreasing values of
shift D @Eq. ~20!# are shown. The convergence is relative
fast. A precision of 10220 is obtained after 30 iterations fo
the largestD value, although decreasingD decreases the rat
of convergence. This effect would be anticipated, since
form of Eq. ~13! implies that decreasingD will introduce
more and more small frequenciesv into the equation of
propagation. ForD values smaller than 0.331022 a signifi-
cant increase of the number of time steps~and thus a de-
crease ofDt! is required to produce convergence.~In the
case of Fig. 3, each cycle betweent50 andTs was made
using only ten time steps.!

Figure 4 presents results that relate to the eigenvalue
tion presented in Sec. III B. Three pairs of curves are p
sented for three decreasing values of the shiftD. For eachD
value two curves are shown. In each case the lowest cu
corresponds to the measure of the defect oful0& as an eigen-
vector of H, i.e., the quantityiH2E0)ul0&i2 @Eq. ~21!#,
whereH represents the value of the matrix at the end of
cycle: t5Ts . The upper curve is a measure of the defect
uX(t5Ts)& @i.e., the part oful0(t5Ts)& embedded in the
original Hilbert spaceeN# as an eigenvector of the matrixH,

i~H2Ea!uX~Ts!&i2. ~22!

This figure reveals that the concepts introduced in
eigenvalue option~Sec. III B! are appropriate. It is in fac
possible to impose a proportionality betweenuX(t)& @Eq. ~5!#
and ula(t)& and thus to follow adiabatically the instanta
neousH eigenvectorula(t)&, although the concomitant pen
alty for this is a decrease of the rate of convergence. T
difference in the behavior ofi(H2E0)ul0&i2 at D51022,
as produced by changing between the two methods set o
Sec. III, is clearly illustrated by Figs. 3 and 4.

The results clearly become incorrect whenD is too large
~e.g., atD50.05!. This is simply because in this caseE0 is
far away from the selected unperturbed eigenvalueEj 51,n50

0

-

p-

-

FIG. 4. Convergence rate for the solution of the eigenva
problem (H2El)uX&50 when using the procedure described
Sec. III B. Three pairs of curves corresponding to three increas
values ofD are presented: full lines,D50.531022; dashed lines,
D51022; dotted lines,D50.531021. For each pair the lower
curve is a measure of the defect oful0& as an eigenvector ofH, i.e.,
i(H2E0)ul0&i2. The upper curve is a measure of the defect ofuX&
@Eq. ~5!# as an eigenvector ofH.
1-5
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JOLICARD, KILLINGBECK, AND PERRIN PHYSICAL REVIEW E63 026701
and thus far away from the exactH eigenvalueEj 51,n50 .
With such a large separation it is impossible to force
adiabatic response and the propagated solutionuX(t)&
spreads out over many eigenvectorsulb&.

Figure 5 compares more directly the general scheme~Sec.
III A ! and the specialized eigenvalue option~Sec. III B!. The
dashed, dotted, and full lines correspond to the gen
scheme. For eachD value, two curves represent successiv
the two functionsi(H2E0)ul0&i2 and i(H2Ea)uX&i2. In
this case the functioni(H2Ea)uX&i2 converges to large val

FIG. 5. Comparison of the convergence rates correspondin
the use of the algorithms of Secs. III A and III B~see text!. Three
pairs of curves correspond to the general scheme~Sec. III A!: full
lines, D50.331021; dashed lines,D51022; dotted lines, D
50.331022. The upper flat lines showi(H2Ea)uX&i2 and the
lower ones showi(H2E0)ul0&i2. The pointsL and 1 show
i(H2Ea)uX&i2 andi(H2E0)ul0&i2 atD51022 for the eigenvalue
method of Sec. III B.
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ues, particularly whenD is large. One obtains, for example,
plateau value of about 1026 for D50.03. This means that th
test stateul0&5u0&1@1/(E02H)#ua&, which is converged
to a precision of less than 10230, has a wide-range expansio
over the basis set ofH eigenvectors$ulb&%.

By contrast the two same functions converge to sm
values~of about 10219 and 10218! in the case of the eigen
value option. This indicates that in this case the conver
test stateul0& is, as expected, proportional to a singleH
eigenvector, i.e., that we haveul0&5u0&1@1/(E0
2Ea)#ula&, where a denotes the state~j 51, n50!. The
figure also shows the decrease of the convergence rate
occurs when the eigenvalue option is used.

V. CONCLUSION

The model of the trial state is based on the use of a c
venient mathematical artifact. By increasing by 1 the dime
sion of the Hilbert space in whichH operates, with the cre
ation of a test state nonsymmetrically coupled to the initiaH
matrix, a new representation of the Green operator equa
uX&5@1/(E2H)#ua& is obtained. This reformulation permit
the application of various algorithms developed within t
framework of stationary and time-dependent wave opera
theories. An adaptation of this formulation allows us to so
the eigenvalue problemua&→ula& for internal eigenstates.

The algorithm used here for the eigenvalue problem w
remain applicable to general non-Hermitian matrices, but
modification introduced to impose adiabatic following of th
instantaneous eigenvectors was seen to give a marked re
tion in the convergence rate. We are currently explor
methods that can be used to counter this effect.

to
.
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